Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice.
نویسندگان
چکیده
Aquaporin-4 (AQP4) is a water channel protein expressed in astrocytes throughout the CNS. In brain, AQP4 facilitates water balance and glial scar formation, which are important determinants of outcome after injury. Here, we provide evidence for AQP4-dependent spinal cord swelling following compression injury, resulting in remarkably improved outcome in AQP4-null mice. Two days after transient T6 spinal cord compression injury, wild-type mice developed more severe hindlimb weakness than AQP4-null mice, as assayed by the Basso open-field motor score, inclined plane method and footprint analysis. Basso motor scores were 1.3 +/- 0.5 (wild-type) versus 4.9 +/- 0.6 (AQP4-null) (SE, P < 0.001). Improved motor outcome in AQP4-null mice was independent of mouse strain and persisted at least 4 weeks. AQP4-null mice also had improved sensory outcome at 2 days, as assessed by spinal somatosensory evoked responses, with signal amplitudes approximately 10 microV (uninjured), 1.7 +/- 0.7 microV (wild-type) and 6.4 +/- 1.3 microV (AQP4-null) (P < 0.01). The improved motor and sensory indices in AQP4-null mice corresponded to remarkably less neuronal death and myelin vacuolation, as well as reduced spinal cord swelling and intraparenchymal spinal cord pressure measured at T6 at 2 days after injury. AQP4 immunoreactivity at the injury site was increased in grey and white matter at 48 h. Taken together, our findings indicate that AQP4 provides a major route for excess water entry into the injured spinal cord, which in turn causes spinal cord swelling and elevated spinal cord pressure. Our data suggest AQP4 inhibition or downregulation as novel early neuroprotective manoeuvres in spinal cord injury.
منابع مشابه
Protective role of aquaporin-4 water channels after contusion spinal cord injury.
OBJECTIVE Spinal cord injury (SCI) is accompanied by disruption of the blood-spinal cord barrier and subsequent extravasation of fluid and proteins, which results in edema (increased water content) at the site of injury. However, the mechanisms that control edema and the extent to which edema impacts outcome after SCI are not well elucidated. METHODS Here, we examined the role of aquaporin-4 ...
متن کاملNew insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice.
Aquaporin-4 (AQP4) is the major water channel in the CNS. Its expression at fluid-tissue barriers (blood-brain and brain-cerebrospinal fluid barriers) throughout the brain and spinal cord suggests a role in water transport under normal and pathological conditions. Phenotype studies of transgenic mice lacking AQP4 have provided evidence for a role of AQP4 in cerebral water balance and neural sig...
متن کاملAquaporin-4 and spinal cord injury
Edema formation is a major problem following traumatic spinal cord injury (SCI) that acts to exacerbate secondary damage. Severity of edema correlates with reduced neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on membranes of astrocytic endfeet in direct contact w...
متن کاملAcute Administration of Estradiol Protects against Spinal Ischemic-Reperfusion Injury in Male Rabbits
Introduction: Postoperative neurological deficit is the most devastating complication after thoracoabdominal aortic aneurysm repair. Despite demonstrated neuroprotective effects of estradiol, its protective efficacy against spinal cord ischemia-reperfusion and underlying mechanisms are not yet elucidated. Methods: Two groups, each of 10 New Zealand white male rabbits, were studied. Control g...
متن کاملPrognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL)
BACKGROUND Ossification of the posterior longitudinal ligament (OPLL) may increase the risk of spinal cord injury (SCI) with various neurological deficits after minor trauma. However, few studies have investigated the influence of OPLL on neurological outcome after acute cord injury. We examined whether severe spinal canal stenosis caused by OPLL affects neurological outcome after SCI based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 131 Pt 4 شماره
صفحات -
تاریخ انتشار 2008